Insult detection using a partitional CNN-LSTM model
نویسندگان
چکیده
منابع مشابه
Dimensional Sentiment Analysis Using a Regional CNN-LSTM Model
Dimensional sentiment analysis aims to recognize continuous numerical values in multiple dimensions such as the valencearousal (VA) space. Compared to the categorical approach that focuses on sentiment classification such as binary classification (i.e., positive and negative), the dimensional approach can provide more fine-grained sentiment analysis. This study proposes a regional CNN-LSTM mode...
متن کاملSensor Attack Detection and Classification via CNN and LSTM
In recent years, security of autonomous vehicles is emerging as popular research topics. Especially, autonomous vehicles are equipped with many sensors such as GPS, IMU, wheel encoders and some of them are vulnerable to the attack, such as spoofing. Our objective is to detect and classify attacks of the right encoder sensor by using variables of GPS, IMU, two wheel encoder sensors. We also anal...
متن کاملYNU-HPCC at EmoInt-2017: Using a CNN-LSTM Model for Sentiment Intensity Prediction
The sentiment analysis in this task aims to indicate the sentiment intensity of the four emotions (e.g. anger, fear, joy, and sadness) expressed in tweets. Compared to the polarity classification, such intensity prediction can provide more finegrained sentiment analysis. In this paper, we present a system that uses a convolutional neural network with long short-term memory (CNN-LSTM) model to c...
متن کاملYZU-NLP at EmoInt-2017: Determining Emotion Intensity Using a Bi-directional LSTM-CNN Model
The EmoInt-2017 task aims to determine a continuous numerical value representing the intensity to which an emotion is expressed in a tweet. Compared to classification tasks that identify 1 among n emotions for a tweet, the present task can provide more fine-grained (real-valued) sentiment analysis. This paper presents a system that uses a bi-directional LSTM-CNN model to complete the competitio...
متن کاملSentiNLP at IJCNLP-2017 Task 4: Customer Feedback Analysis Using a Bi-LSTM-CNN Model
Analysis of customer feedback helps improve customer service. Much online customer feedback takes the form of online reviews, but the tremendous volume of such data makes manual classification impractical, raising the need for automatic classification to allow analysis systems to identify meanings or intentions expressed by customers. The aim of shared Task 4 of IJCNLP 2017 is to classify custo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Data Analysis Techniques and Strategies
سال: 2022
ISSN: ['1755-8050', '1755-8069']
DOI: https://doi.org/10.1504/ijdats.2022.10054336